Vectorial spaces, matrix representation, special matrices
نویسنده
چکیده
Algebraic operations on matrices can be interpreted geometrically if one considers coefficients of matrices as coordinates of vectors. However, our geometrical intuition suggests that vectors “exist” in their own right irrespective of their coordinates. After all, the same vector may have different coordinates in different coordinate systems. This means that the link between vectorial quantities and matrices is bit more subtle than at first look. This note is to clarify the relationship between linear algebra, which deals with operation on vectors, and matrix algebra, which deals with operation on vectors given system of coordinates.
منابع مشابه
QUASI-PERMUTATION REPRESENTATIONS OF SUZtTKI GROUP
By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fai...
متن کاملQUASI-PERMUTATION REPRESENTATIONS OF METACYCLIC 2-GROUPS
By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus, every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fa...
متن کاملLower Bounds of Copson Type for Hausdorff Matrices on Weighted Sequence Spaces
Let = be a non-negative matrix. Denote by the supremum of those , satisfying the following inequality: where , , and also is increasing, non-negative sequence of real numbers. If we used instead of The purpose of this paper is to establish a Hardy type formula for , where is Hausdorff matrix and A similar result is also established for where In particular, we apply o...
متن کاملGeneralized interval arithmetic on compact matrix Lie groups
We introduce a generalization of intervals over compact matrix Lie groups. Interval group elements are defined using a midpoint-radius representation. Furthermore, we define the respective group operations and the action of interval group elements on vector spaces. We developed structures and operations are implemented for the special case of orthogonal matrices in the matrix library of the COC...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018